PRELIMINARY SCREENING

All Preliminary Screens (A-F) shall be completed by the utility and results shall be provided to the applicant in accordance with Section C, Step 4.

Screen A: Is the PCC on a Networked Secondary System?

Does the proposed system connect to a secondary network system?
- Yes (Fail Screen)
- No (Pass Screen)

If Screen A fails:
The proposed DER is connected to a secondary network system.

Screen B: Is Certified Equipment Used?

Does the applicant propose to use equipment that has been listed to meet UL 1741 (Inverters, Converters and Charge Controllers for Use in Independent Power Systems) and for inverter based equipment, UL 1741 and its supplement SA, by a nationally recognized testing laboratory?
- Yes (Pass Screen)
- No (Fail Screen)

If Screen B fails:
The proposed DER equipment is not UL 1741 certified.

Screen C: Is the Electric Power System (EPS) Rating Exceeded?

Does the maximum aggregated generation or loading capacity connected to an EPS (existing and approved prior to application) exceed any EPS ratings (modified per established utility practice)?
- Yes (Fail Screen)
- No (Pass Screen)

If Screen C fails:
The following EPS equipment ratings have been exceeded as a result of the aggregate interconnected and proposed DER (including this project):

[Item 1] exceeded by [XX]%
[Item 2] exceeded by [XX]%
[Repeat as necessary…]
Screen D: Is the Line and Grounding Configuration Compatible with the Interconnection Type?

1. Identify primary distribution line configuration that will serve the distributed generation or energy storage. Based on the DER interconnection and using the table below, determine compatibility with the electric power service, including, phase balance, line and grounding configuration. The following table shall be used to determine risk for ineffective grounding.

<table>
<thead>
<tr>
<th>Primary distribution line configuration</th>
<th>Type of DER connection to primary</th>
<th>Result/Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-phase, three-wire</td>
<td>Any type</td>
<td>Pass</td>
</tr>
<tr>
<td>Three-phase, four-wire > 5 kV</td>
<td>Single-phase line-to-neutral</td>
<td>Pass</td>
</tr>
<tr>
<td>All Three-phase, four-wire</td>
<td>All others</td>
<td>Fail. To pass aggregate DER AC nameplate rating must be less than or equal to 10% of line-section peak load</td>
</tr>
<tr>
<td>(For any line that has sections or mixed three-wire and four-wire)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Based on aggregate DER on the feeder, is phase balancing maintained within utility limits?

- If items 1 & 2 pass, (Pass Screen)
- If items 1 or 2 fail, (Fail Screen)

If Screen D fails:
- If Question 1 Fails:
 - Aggregate interconnected and proposed DER (including this project): [XX] MW
 - 10% of upstream line section peak load: [XX] MW

- If Question 2 fails:
 - Utility phase balancing must be maintained within [X]%.
 - The aggregate DER (including this project) causes a phase imbalance of: [X]%.

Screen E: Simplified Penetration Test

If the aggregate DER capacity on any medium voltage line section (existing and approved prior to application) is less than 15% of the annual peak load for all line sections bounded by automatic sectionalizing devices upstream of the DER?

- Yes (Pass Screen)
- No (Fail Screen)
If Screen E fails:

15% of upstream line section peak load: [XX] MW
Aggregate DER (including this project) on upstream line section: [XX] MW

[Repeat as necessary]

Screen F: Is Feeder Capacity Adequate for Individual and Aggregate DER?

1. Is the feeder available short circuit capacity at the medium voltage PCC, divided by the rating of the individual DER, greater than 25?
2. Is the feeder available short circuit capacity at the substation divided by the capacity all aggregate DER on the feeder, greater than 25?
 • If items 1 & 2 pass, (Pass Screen)
 • If items 1 or 2 fail, (Fail Screen)

If Screen F fails:
DER rating:
Three-phase short circuit capacity at PCC:
Stiffness factor at PCC:

Aggregate DER (including this project) rating:
Three-phase short circuit capacity at Substation:
Stiffness factor at Substation: